Get started with keras-js CDN
MIT licensed
Keras-JS: Lightweight browser library for building, training deep neural models.
Tags:- keras
- deep
- learning
- machine
- neural
- networks
- javascript
- webgl
- gpu
Stable version
Copied!
How to start using keras-js CDN
// Include Keras.js library from the CDN
const keras = document.createElement('script');
keras.src = 'https://cdn.cdnhub.io/keras-js/0.3.0/keras.js';
document.head.appendChild(keras);
// Wait for Keras.js to be loaded
new Promise(resolve => {
keras.onload = () => {
// Prepare a simple neural network model
const model = keras.sequential();
model.add(keras.layers.dense({units: 32, inputShape: [784], activation: 'relu'}));
model.add(keras.layers.dense({units: 10, activation: 'softmax'}));
// Compile the model
model.compile({
optimizer: keras.optimizers.Adam(),
loss: 'categoricalCrossent',
metrics: ['accuracy']
});
// Load MNIST dataset
const data = keras.image.loadDatasets('https://storage.googleapis.com/download.tensorflow.org/data/mnist.npz');
// Preprocess the data
const xs = data.train.x.map(x => keras.utils.toTensorXData(x));
const ys = data.train.labels.map(y => keras.utils.toTensorYData(y));
// Reshape the data to fit the model
const xsBatch = keras.utils.arrayReshape(xs, [60000, 784]);
// Train the model
model.fit(xsBatch, ys, {
epochs: 10,
batchSize: 128
});
// Make predictions on test data
const xTestBatch = keras.utils.arrayReshape(data.test.x, [10000, 784]);
const yPred = model.predict(xTestBatch);
// Print predictions
console.log(yPred);
// Remove the script tag
document.head.removeChild(keras);
resolve();
};
});
Copied!